
For source code, sample chapters, the Online Author Forum, and other resources, go to

https://www.manning.com/books/secrets-of-the-javascript-ninja

JavaScript: A look at Sets.

By John Resig, Bear Bibeault, and Josip Maras

In this article, excerpted from Secrets of the JavaScript Ninja, we

take a look at a newcomer to JavaScript: Sets, collections of

unique items.

In a large number of real-world problems, we often have to deal with collections of distinct

items (meaning that each item cannot appear more than once), the so called Sets. Up to ES6,

this was something that you had to implement yourself, by mimicking them with standard

objects. For a very crude example, see the following listing.

Listing 1 Mimicking sets with objects

function Set(){

 this.data = {}; //#A

 this.length = 0; //#A

}

Set.prototype.has = function(item){

 return typeof this.data[item] !== "undefined";

 }

Set.prototype.add = function(item){

 if(!this.has(item)){ //#B

 this.data[item] = true; //#B

 this.length++; //#B

 } //#B

};

Set.prototype.remove = function(item){

 if(this.has(item)){

 delete this.data[item];

 this.length--;

 }

}

var ninjas = new Set();

ninjas.add("Hattori"); //#C

https://www.manning.com/books/secrets-of-the-javascript-ninja
https://www.manning.com/books/secrets-of-the-javascript-ninja

For source code, sample chapters, the Online Author Forum, and other resources, go to

https://www.manning.com/books/secrets-of-the-javascript-ninja

ninjas.add("Hattori"); //#C

assert(ninjas.has("Hattori") && ninjas.length == 1, //#D

 "Our set contains only one Hattori"); //#D

ninjas.remove("Hattori");

assert(!ninjas.has("Hattori") && ninjas.length == 0,

 "Our set is now empty");

#A Use an object to store items

#B Add an item only if it isn’t already contained within the set

#C Try to add Hattori twice

#D Check that Hattori is added only once

Listing 1 shows a very simple example of how sets can be mimicked with objects. We use a

data storage object data, for keeping track of our set items, and we’ve exposed three

methods: the has method, which checks whether an item is already contained within our set;

the add method, which adds an item, only if the same item is not already contained, and the

remove method, which removes an already existing item from the set.

However, this is a poor doppelganger, as with maps, you cannot really store objects, only

strings and numbers, and there’s always the risk of accessing prototype objects. For these

reasons, the ECMAScript comity has decided to introduce a completely new type of a collection

Sets.

NOTE Sets are a part of the ES6 standard. For current browser

compatibility, see: https://kangax.github.io/compat-table/es6/#test-Set.

Creating our first Set

The cornerstone of creating sets is the newly introduced constructor function, conveniently

named Set. Let’s see an example.

Listing 2 Creating sets

var ninjas = new Set(["Kuma", "Hattori", "Yagyu", "Hattori"]); //#A

assert(ninjas.has("Hattori"), "Hattori is in our set"); //#B

assert(ninjas.size == 3, "There are only three ninjas in our set!"); //#B

assert(!ninjas.has("Yoshi"), "Yoshi is not in, yet.."); //#C

ninjas.add("Yoshi"); //#C

assert(ninjas.has("Yoshi"), "Yoshi is added"); //#C

https://www.manning.com/books/secrets-of-the-javascript-ninja
https://kangax.github.io/compat-table/es6/#test-Set

For source code, sample chapters, the Online Author Forum, and other resources, go to

https://www.manning.com/books/secrets-of-the-javascript-ninja

assert(ninjas.size == 4, "There are four ninjas in our set!"); //#C

assert(ninjas.has("Kuma"), "Kuma is already added"); //#D

ninjas.add("Kuma"); //#D

assert(ninjas.size == 4, "Adding Kuma again has no effect"); //#D

for(var ninja of ninjas) { //#E

 assert(ninja, ninja); //#E

} //#E

#A The Set constructor can take in an array of items with which the set will be initialized

#B Any duplicate items are simply discarded

#C We can add new items, that aren’t already contained within the set

#D Adding existing items will have no effect

#E We can iterate through sets with the for…of loop

In listing 2, we use the built-in Set constructor to create a new ninjas set that will contain

distinct ninjas. If we don’t pass in any arguments, an empty set will be created. We can also

pass in an array, as we did in this example, which will prefill the set for us.

new Set(["Kuma", "Hattori", "Yagyu", "Hattori"]);

As we already mentioned, sets are collections of unique items, and their primary purpose is

to stop us from storing multiple occurrences of the same object. In our case, this means that

"Hattori", which we tried to add twice, will only be added only once.

Every set has a number of methods accessible from it. For example, the has method

checks whether an item is contained in the set

ninjas.has("Hattori")

and the add method is used to add unique items into the set:

ninjas.add("Yoshi");

If we are curious about how many items are there in a set, we can always use the size

property.

Similar to maps and arrays, since sets are also collections, so there’s nothing stopping us

from iterating over them with a for…of loop. As you can see in the following figure, the items

are always iterated over in the order in which they were inserted.

https://www.manning.com/books/secrets-of-the-javascript-ninja

For source code, sample chapters, the Online Author Forum, and other resources, go to

https://www.manning.com/books/secrets-of-the-javascript-ninja

Figure 1 Running the code from listing 2 produces the following output. The items in a set are always

iterated over in the order in which they were inserted.

Now that we’ve gone through the basics of sets, let’s visit some common operations on

sets: unions, intersections, and differences.

Union of sets

The first operation that we’re going to study is union. Simply put, a union of two sets A and B,

creates a new set which contains all elements from both A and B. Naturally each item cannot

occur more than once in the new set.

Listing 3 Using sets to perform a union of collections

var ninjas = ["Kuma", "Hattori", "Yagyu"]; //#A

var samurai = ["Hattori", "Oda", "Tomoe"]; //#A

var warriors = new Set([...ninjas, ...samurai]); //#B

assert(warriors.has("Kuma"), "Kuma is here"); //#C

assert(warriors.has("Hattori"), "And Hattori"); //#C

assert(warriors.has("Yagyu"), "And Yagyu"); //#C

assert(warriors.has("Oda"), "And Oda"); //#C

assert(warriors.has("Tomoe"), "Tomoe, last but not least"); //#C

assert(warriors.size === 5, "There are 5 warriors in total"); //#D

https://www.manning.com/books/secrets-of-the-javascript-ninja

For source code, sample chapters, the Online Author Forum, and other resources, go to

https://www.manning.com/books/secrets-of-the-javascript-ninja

#A Create an array of ninjas and samurai. Notice how Hattori is both a ninja and a samurai

#B Create a new set of warriors by de-structuring ninjas and samurai

#C All our ninjas and samurai are included in the new warriors set

#D There are no duplicates in the new set, Hattori even though he is contained in both the ninjas and

the samurai sets is included only once!

In listing 3, we first create an array of ninjas and an array of samurai. Notice how

Hattori is leading a very busy life; samurai by day, and a ninja by night. Now imagine that

we need to create a collection of people that we can call to arms if a neighboring daimyo

decides that his province is a bit cramped. We’ll create a new set of warriors that will

include all ninjas and all samurai. However, since Hattori is in both collections, we want

to include him only once, it’s not like two Hattoris will respond to our call.

In this case, sets are perfect! We don’t need to manually keep track of whether an item

has been already included, the set takes care of that by itself, automatically.

When creating this new set, we’ve used the spread operator: [...ninjas, ...samurai]

(remember Chapter 4) to create a new array that will contain all ninjas and all samurai. In

case you’re wondering, Hattori will be present twice in this new array. However, when we

finally pass that array to the Set constructor, Hattori will be included only once, see the

following figure.

Figure 2 A union of two sets keeps the items from both collections (without duplicates, of course)

https://www.manning.com/books/secrets-of-the-javascript-ninja

For source code, sample chapters, the Online Author Forum, and other resources, go to

https://www.manning.com/books/secrets-of-the-javascript-ninja

Intersection of sets

The second operation that we’ll explore is the intersection of two sets A and B, that creates a

set that contains elements of A that are also in B. In our example, this could be finding out

ninjas that are also samurai, see the following example.

Listing 4 Intersection of sets

var ninjas = new Set(["Kuma", "Hattori", "Yagyu"]);

var samurai = new Set(["Hattori", "Oda", "Tomoe"]);

var ninjaSamurais = new Set(

 [...ninjas].filter(function(ninja){ //#A

 return samurai.has(ninja); //#A

 }) //#A

);

assert(ninjaSamurais.size == 1, "There’s only one ninja samurai");

assert(ninjaSamurais.has("Hattori") == "Hattori is his name");

#A Use the spread operator to turn our set into an array, so that we can use the array’s filter method to

keep only ninjas that are contained in the samurai set

The idea behind listing 4 is to create a new set that will contain only ninjas that are also

samurai. We’ll do this by taking advantage of the array’s filter method which, as you

remember, creates a new array that contains only the items that match a certain criterion. In

our case, that criterion is that the ninja is also a samurai (that it is contained within the set of

samurai). Since the filter method can only be used on arrays, we have to turn our ninjas

set into an array by using the spread operator:

[...ninjas]

Finally, in the end, we check that we’ve found only one ninja that’s also a samurai, our

jack-of-all-trades, Hattori.

Difference of sets

The final set operation that we’re going to study is the difference of two sets A and B, that

contains all elements that are in set A, but that are not in set B. As you might guess, this is

very similar to the intersection of sets, with one small but significant difference. Let’s take a

look at the next listing, in which we want to find only true ninjas (and not the ones that also

daylight? as samurai):

Listing 5 Difference of sets

var ninjas = new Set(["Kuma", "Hattori", "Yagyu"]);

var samurai = new Set(["Hattori", "Oda", "Tomoe"]);

var pureNinjas = new Set(

 [...ninjas].filter(function(ninja){ //#A

https://www.manning.com/books/secrets-of-the-javascript-ninja

For source code, sample chapters, the Online Author Forum, and other resources, go to

https://www.manning.com/books/secrets-of-the-javascript-ninja

 return !samurai.has(ninja); //#A

 }) //#A

);

assert(pureNinjas.size == 2, "There’s only one ninja samurai");

assert(pureNinjas.has("Kuma"), "Kuma is a true ninja");

assert(pureNinjas.has("Yagyu"), "Yagyu is a true ninja");

#A With set difference, we care only about ninjas that are NOT samurai!

The only change that we have brought upon is specifying that we care only about the

ninjas that are NOT also samurai, simply by putting an exclamation mark (!) before the

samurai.has(ninja) expression.

https://www.manning.com/books/secrets-of-the-javascript-ninja

